The Carbon Dioxide Utilisation Network


Carbon Dioxide Utilisation: Faraday Discussion 183

September 6, 2015 – September 9, 2015 all-day
University of Sheffield, The Edge
Endcliffe Hall
81 Endcliffe Vale Road, Sheffield, South Yorkshire S10 3EU
RSC Events
Tel: +44 (0) 1223 432254 / 43238


Carbon dioxide utilisation processes convert CO2 into commercially viable products such as chemicals, polymers, building materials and fuels. Carbon dioxide utilisation is an emerging technology which can contribute to the reduction of greenhouse gas emissions by the use of CO2 to manufacture useful products. While generally un-reactive, CO2 can be activated, particularly through catalysis, to yield a vast array of chemical feedstocks, intermediates and value-added products. For this to be effective, a synergistic approach is needed where multiple technologies and energy sources are integrated over a complete system.


  • Capture Agents & Conversion MechanismsNovel materials that enhance the capture efficiency and selectivity of CO2 need to be developed.  Molecular design through simulation and/or synthesis can be used to develop task specific materials. Furthermore, by tuning the capture chemistry, the CO2 molecule can be activated towards subsequent reaction. This session will discuss how capture agent design can be coupled to activation and the mechanisms of this interaction will be considered.
  • Atom Efficiency in Small Molecule & Macromolecule SynthesisReactions in which CO2is added to a co-reactant preserving at least one of the C=O bonds, such as cyclo-addition reactions.  Such reactions will have no or limited by-product production.  Macromolecules, including polymers, will be included in these discussions.
  • CO2 Reduction ReactionsThe production of liquid synthetic fuels will play a major role is future energy storage strategies and major sources of hydrogen must be produced and utilised in an energy efficient manner.
  • Biotransformations and BiomimeticsBiotransformations will provide the lead for the development of biomimetic systems that outperform nature. This will include solar fuels which can be produced with a higher efficiency than in natural photosynthetic processes.


This discussion aims in part to look at a holistic approach, identifying where efficiencies can enhance the whole process economics and predicting where there may be bottlenecks in the supply chain.

Carbon dioxide utilisation is presented as a complementary rather than competitive approach to carbon capture and storage, where the product produces a viable profit that can be used to off-set the carbon capture technologies required to mitigate against climate change.


Contact and Further Information

RSC Events
Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK
Tel: +44 (0) 1223 432254 / 432380
Fax: +44 (0) 1223 423623
Email: RSC Events